Kinetics and Mechanism of the Base Hydrolysis of Bis(ethylcysteinato)palladium(II)

ROBERT W. HAY and P. BANERJEE

Department of Chemistry, University of Stirling, Stirling FK9 4LA, U.K.

Received December 5, 1979

Recently Pneumatikakis and Hadjiliadis [l] have described the preparation of a number of solid complexes of palladium(H) and platinum(I1) with cysteine (cystOH) and cysteine methyl ester (cystOMe). In the present paper we describe kinetic studies of the base hydrolysis of $[Pd(cystOE)]^0$.

Experimental

LCysteine ethyl ester hydrochloride was purchased from Aldrich and used as received. Potassium tetrachloropalladate(I1) was obtained from Alfa. All other chemicals were of Analar grade.

Bis(ethy1 cysteinato)palladium(II) was prepared from ethyl cysteinate hydrochloride and K_2PdCl_4 essentially as previously described for the methyl ester $[1]$. The i.r. spectrum (KBr disc) had ν NH, 3250, 3180; ν C=O (ester) 1722; δ NH 1560 and ν (C-0) 1220 cm⁻¹. Anal. Calc. for C₁₀H₂₀N₂O₄S₂Pd: C, 29.82; H, 5.00; N, 6.96; S, 15.92. Found: C, 29.66; H, 5.17; N, 6.76; S, 15.81.

The kinetics of hydrolysis of the complex was studied using a Radiometer TTTl automatic titrator used as a pH-stat. The general experimental technique employed has been previously outlined [2]. A high alkalinity glass electrode type G202B was used as indicator electrode. The electrode system was standardised with NBS phosphate buffer (pH 6.86 at 25 °C) and borate buffer (pH 9.18 at 25 °C).

Hydroxide ion concentrations at $I = 0.1$ *M* were determined from the pH using $pK_w = 13.997$ and a value of 0.774 for the activity coefficient of the hydroxide ion. As the complex has limited water solubility it was found convenient to use the following experimental technique. A weighed sample $(2 \times 10^{-5}$ moles) of the complex was added to the reaction vessel followed by 1 cm3 of N,N-dimethylformamide to dissolve the material. The volume was then made up to 100 cm^3 with KNO₃ solution so that the final ionic strength was 0.1 M. Complete hydrolysis of the complex required two molar equivalents of base. All measurements were carried out at 25 $^{\circ}$ C.

Results and Discussion

As a result of the strong *trans* influence of the sulphur donor, the complex $[Pd(cystOE)]^0$ is expected to have the *trans-N₂S₂* structure shown in (I). The i.r. spectrum of the complex has $v(C=0)$

ester at 1722 cm^{-1} , a value which may be compared with those reported [3] for methyl cysteinate hydrochloride ($vCO = 1735$ cm⁻¹) and methyl cysteinate $(\nu CO = 1730 \text{ cm}^{-1})$. The i.r. data provides good evidence for the validity of structure (I). If the ethoxycarbonyl group rather than the $-NH₂$ group, was involved in bonding, a substantial decrease in the carbonyl stretching frequency would be observed [3]. Hydrolysis of the complex would be expected to occur in two steps, which could be represented by the eqns. (1) and (2) .

$$
[Pd(cystOEt)_2]^0 \xrightarrow{k_1} [Pd(cystOEt)(cystO)]^-
$$
 (1)

$$
[Pd(cystOEt)(cystO)]^- \xrightarrow{\mathbf{k}_2} \qquad (2)
$$

Plots of log $(V_{\infty} - V_t)$ *versus* time were all of the type shown in Fig. 1 (\dot{V}_{∞}) is the final volume of base consumed and V_t is the volume of base consumed at time t). It is clear that the first hydrolysis step is somewhat slower than the second. Values of k_1 (obs) and k_2 (obs), the observed first order rate constants at constant pH were obtained from the initial and final slopes of such plots. The rate constants are summarised in Table I.

TABLE I. Kinetic Data at 25 °C and I = 0.1 *M* (KNO₃).

рH	$104[OH-]$ (M)	$10^4 k_1$ (obs) (s^{-1})	10^4 k ₂ (obs) (s^{-1})
10.14	1.80	3.77	6.77
10.29	2.54	4.10	7.68
10.40	3.28	6.28	9.17
10.62	5.44	10.01	16.95
10.79	8.04	13.47	21.40
10.94	11.36	16.77	25.82

 $P_{\text{max}}(0,1,\ell,1,\lambda)$ and $P_{\text{max}}(0,1,\lambda)$ versus the hydroxide $\frac{1}{10}$ ion concentration and $\frac{1}{2}$ ($\frac{1}{2}$) intercept, int ion concentration are linear with a positive intercept,
Fig. 2. This observation indicates both a hydroxide ig. 2. This observation indicates both a hydroxide on and pri-independent hydrolysis pathway. The after can be assigned to water attack on the complex. \mathfrak{m} . \mathfrak{m}

Values of kalo(obs) were obtained from the intervalues of M_{30} (00s) were obtained from the filtercept of the plots described above and values of k_{H_2O} calculated from the expression $k_{H,0} = k_{H,0}$ (obs)/ [H₂O] where [H₂O] = 55.5 M. The k_{OH} constants were obtained from the slopes of the plots shown
in Fig. 2.

The requisite rate constants are $k'_{OH} = 1.42 M^{-1}$ s-r, i.e. r, e.g. it is a constant of the equal to the constant of the equal to $\frac{M-1}{2}$ and $\frac{M-1}{2}$ $\mathbf{S}_{\text{H}_2\text{O}}$ \sim 2.3 \land 10 M s, \mathbf{N}_{OH} \sim 2.12 M and $kH_2O = 3.7 \times 10^{7}$ m s. The famos $10H/NH_2O$ and NOH/NH_2O are some are somewhat lower $10⁵$ respectively. These values are somewhat lower than ratios previously observed $(10⁸-10¹¹)$ for the relative nucleophilicities of hydroxide ion and water in metal-ion-promoted ester hydrolysis [4, 6]. F because hydrolysis \mathbf{F} , \mathbf{F} $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ of the value of $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \end{bmatrix}$ is $\begin{bmatrix} 0 & 0 \end{bmatrix}$ $(CO_2Et)CH_2S^$, the value of k_{OH} is 4.17 \times 10⁻² M⁻¹ s^{-1} at 25 °C [5]. Thus the complexed ester anion undergoes base hydrolysis some 2×10^3 to 3×10^3 times faster than the free ligand. These effects are understandable on the basis of structure (1) since direct binding of the ethoxycarbonyl group to the metal centre would be expected to lead to rate $\frac{1}{2}$ centre would be expected to lead to late the complex of μ -to μ -to accelerate to accelerate hythe complex (1) will also lead to accelerated hydroxide ion attack and this appears to be an important consideration in this case.

Acknowledgements

We wish to thank the Leverhulme Foundation for θ and θ are θ and θ are θ and θ is one of use of the award of a Leverhulme Fellowship to one of use (PB) and the Science Research Council for financial support.

(e. 1. FIOL Of $\log (v_{\infty} - v_{\rm t})$ for the hydrolysis of Γ at 25 γ

ig. 2. Plot of $k_1(00s)$ and $k_2(00s)$ versus the hydroxide ion concentration at 25 °C and $I = 0.1$ M (KNO₃) (k₁(obs) = Δ ;
k₂(obs) = \odot).

- **Chem., 41.429 (1929).**
Chem., 41.429 (1929). *2* R. W. Hay, L. J. Porter and P. J. Morris, *Austral. J. Chem.,*
- R. W. Hay, L.J.
10. 1107/1066). *3* R.'W.HayandL.J.Porter,Austral.J.Chem.,20,675(1967). NY (1977).
-
- **References** *4* R. W. Hay and K. B. Nolan, *J. Chem. Sot. Dalton ZYans, 1348* (1975). 1 G. Pneumatikakis and N. Hadjlliadis, J. Inorg. NucI. 5 H. L. Conley and R. B. Martin, J. *Phys. Chem., 69, 2923*
	- 5 H. L. Conley and R. B. Martin, J. Phys. Chem., 69, 2923 (1965). *6* R. W. Hay and P. J. Morris in 'Metal Ions in Biological
	- N, W. Hay and P. J. MONIS IN Metal IONS IN DIOIOgical